通信人家园
标题:
《matlab中fft的理解》!初来乍到,家园副管很照顾,给大家点儿转的资料,共同学习!
[查看完整版帖子]
[打印本页]
时间:
2013-9-24 20:50
作者:
hylh112er
标题:
《matlab中fft的理解》!初来乍到,家园副管很照顾,给大家点儿转的资料,共同学习!
采样得到的数字信号,就可以做
FFT
变换了。N个采样点,经过
FFT
之后,就可以得到N个点的
FFT
结果。为了方便进行
FFT
运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。那么
FFT
之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么
FFT
的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做
FFT
,则结果可以分析到1Hz,如果采样2秒时间的信号并做
FFT
,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。
假设
FFT
之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn)
,即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。
由于
FFT
结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
通信人家园 (https://www.txrjy.com/)
Powered by C114