- 经验
- 99
- 分贝
- 0
- 家园分
- 414
- 在线时间:
- 257 小时
- 最后登录:
- 2024-11-4
- 帖子:
- 65
- 精华:
- 0
- 注册时间:
- 2013-8-19
- UID:
- 939614
注册:2013-8-193
|
摘要
随着5G网络开启规模商业部署,越来越多的研究机构及相关人员开始对下一代移动通信系统进行研究。文章将探讨十年后(2030年~)的6G概念。该文首先用四个关键词概括未来6G愿景:“智慧连接”、“深度连接” 、“全息连接”和“泛在连接”,这四个关键词共同构成“一念天地,万物随心”的6G总体愿景。接着分析了实现6G愿景面临的技术需求与挑战,包括峰值吞吐量、更高能效、随时随地的连接、全新理论与技术以及一些非技术挑战。然后分类给出了6G潜在关键技术:新频谱通信技术,包括太赫兹通信和可见光通信;基础性技术,包括稀疏理论(压缩感知)、全新信道编码、大规模天线及灵活频谱使用;专有技术特性,包括空天地海一体化网络和无线触觉网络。文章通过探讨6G愿景、需求与挑战以及潜在关键技术,尝试勾勒出6G的整体框架,以期为后续展开6G研究提供方向性指引。
中国科学: 信息科学, 2019, doi: 10.1360/N112019-00033
1、引言
随着5G第一个标准版本完成,2019年将会有5G网络设备小规模试商用,首批符合5G标准的终端亦将上市。可以预期,拥有三大技术特性(enhanced Mobile BroadBand,eMBB;massive Machine-Type-Communications,mMTC;ultra-Reliable Low-Latency Communications,uRLLC)的5G无线移动通信系统将支撑未来十年(2020~2030年)信息社会的无线通信需求,成为有史以来最庞大复杂的通信网络,并将在多方面深刻影响社会发展及人类生活:与水和电一样,移动通信也将成为人类社会的基本需求;成为推动社会经济、文化和日常生活在内的社会结构变革的驱动力;将会极大地扩展人类的活动范围。
当然,上述5G愿景还需要通信领域的技术人员与其它相关行业人员一起努力,经过一定的时间逐步实现,包括标准不断完善、工程化逐步落地及商业应用模式突破等。这里从标准化角度观察5G标准不断成熟完善的过程。
当前处于5G标准化的第一阶段,即5G基础功能标准化阶段。此阶段主要针对eMBB技术特性优化,同时兼顾uRLLC和mMTC两种特性的基础需求,包括5G NR Rel-15和Rel-16两个标准版本。5G第一个基础标准化版本(5G NR Rel-15)已基本完成,包括分阶段发布的三个子版本:国际标准化组织3GPP 于2018年3月发布了第一个5G技术标准, 支持非独立组网(Non-Standalone,NSA)与eMBB功能[1];2018年9月,3GPP批准了5G独立组网(Standalone, SA)技术标准[2],5G自此进入了产业全面冲刺的新阶段;2018年12月3GPP 于RAN#82全会上宣布,最后一个子版本(5G NR Rel-15 late drop)于2019年3月发布,支持NR-NR DC(Dual Connectivity)特性[3]。而5G第二个标准版本(Rel-16),其所有技术特性已通过标准立项,相关标准化工作正在如火如荼的进行中,并将于2019年12月完成并正式发布。
5G标准化的下一阶段(可称为“5G+”)将从2020年开始,对应的标准版本为5G NR Rel-17及后续版本,标准化重点包括两方面[4]:优化uRLLC和mMTC两种物联网(Internet of Things,IoT)特性,以更好支持垂直行业的应用(例如,工业无线互联网、高铁无线通信等);设计支持52.6GHz~114.25GHz毫米波频段的空口特性。预期5G标准化的第二阶段将会吸引更多垂直行业领域成员参与标准制定,从而5G标准可以更好地针对垂直行业需求进行标准优化。
尽管5G尚处于规模商用起步阶段,相关技术特性还需要继续增强完善,物联网及垂直行业应用场景的业务模式也需要继续探索,但我们也有必要同步前瞻未来信息社会的通信需求,启动下一代移动通信系统概念与技术研究。这里我们尝试从三方面分析即刻启动下一代移动通信系统(为简化表达,下文将统一用6G标识)概念与技术研究的必然性。
(1)十年周期法则。“自1982年引进第一个代(1G)移动通信系统以来,大约每十年更新一代无线移动通信系统”[5],而且任何一代从开始概念研究到商业应用都需要十年左右的时间,也即,当上一代进入商用期,下一代开始概念和技术研究。5G研究始于十年前,现在启动6G研究符合移动通信系统发展规律。
(2)“鲶鱼效应”。不同于前几代移动通信系统,5G主要针对物联网/垂直行业应用场景。随着5G网络规模部署,尤其是5G中后期,必将会有众多垂直行业成员深度参与5G生态。与传统运营商主导的现状相比,未来新兴企业(尤其是天生具有创新思维的互联网公司)的深入参与将会对传统通信产业产生巨大冲击,甚至是革命性影响,即所谓“鲶鱼效应”。
(3)IoT业务模式爆发潜力。如同当年智能手机的出现刺激了3G应用并触发4G规模部署需求,相信IoT业务某些模式亦将会在5G时代某时间点刺激5G产业爆发,进而刺激对未来6G网络的需求。我们需要有足够的想象力,并需要为可能到来的未来网络提前着手准备,打好技术基础。
综上分析,我们可以得出结论——现在是开启下一代无线移动通信系统(6G)研究的合适时机。
近期,越来越多的机构或个人开始涉及B5G或6G概念,包括学术界、工业界、政府甚至公众[6-9]。根据谷歌搜索引擎的统计,“6g technologies”是当今搜索量最大的17个关键词之一[10]。在2018美国移动世界大会上,美国联邦通讯委员会的一位官员在公开场合展望6G[9]。不只美国,中国也已启动6G相关工作。2018年3月工业和信息化部部长苗圩在接受媒体采访时表示,中国已着手研究6G[11]。据悉,除中美两国外,欧盟、俄罗斯等也正在紧锣密鼓地开展相关工作。由此可以看出,业界对现在启动6G相关研究有一定的共识。
本文主要探讨十年后(2030年~)的通信需求和技术,即针对下一代无线移动通信系统(6G),其相对5G属于革命性(Revolution)系统。当然,不排除本文涉及的部分技术特性提前成熟或部分业务场景提前应用的可能,则本文把该部分归属5G演进特性(Evolution),即可以归属所谓B5G(Beyond 5G)。可以预期,当前5G大部分特性将会在6G系统中继续保留并增强,但这些5G技术增强部分不属于本文讨论范畴。本文将侧重探讨6G系统中可能引入的革命性关键技术。
本文将分别从需求驱动和技术驱动两个维度进行分析讨论,重点探讨6G愿景、需求与挑战、潜在候选技术,尝试勾勒出6G的整体框架,以期为后续展开6G研究提供方向性指引。
2、6G愿景与挑战
5G启动初期,确立的5G愿景为“信息随心至,万物触手及”[12]。基于此愿景,确定了5G技术指标需求,并进一步提出了候选关键技术。经历了概念确定、技术研究、标准化和产品开发过程,5G系统即将投入规模商用,5G愿景也将随着标准的完善及产业的成熟而逐步实现。现在要开启6G前瞻性研究,也有必要首先确立6G愿景及相应的技术需求与挑战,以牵引后续6G相关研究。5G已经如此激动人心,并将全面地赋能社会,未来我们还能做什么?
本节将首先给出对未来6G愿景的畅想,并浅析所述愿景的必然性,然后进一步阐述实现6G愿景所面临的技术需求与挑战。
2.1 6G愿景(6G Vision)
当前5G的目标是渗透到社会的各个领域,以用户为中心构建全方位的信息生态系统。但受限标准化时间及相关技术发展的成熟度,在信息交互的空间深度和广度上还有很多不足:当前通信对象集中在陆地地表数千米高度的有限空间范围内;虽然考虑了物联需求,但距离真正无所不在的万物互联还有距离。尤其是随着人类活动范围的快速扩张,众多技术领域的快速进步,对更加广泛多样的信息交互提出了更高的需求。
6G目标是满足十年后(2030年~)的信息社会需求,因此6G愿景应该是现有5G不能满足而需要进一步提升的需求。基于5G可以满足的需求,并结合其它相关领域的发展趋势,我们认为6G愿景可以概括为四个关键词:“智慧连接”、“深度连接”、“全息连接”、“泛在连接”,而这四个关键词共同构成“一念天地,万物随心”的6G总体愿景。
5G愿景“信息随心至,万物触手及”,强调信息交互、万物可连接,而且连接对象集中在陆地10km高度的有限空间范围内。5G虽然在Rel-16版本开始研究并标准化非陆地通信网络(non-terrestrial networks,NTN))技术特性[13],但NTN架构涉及的卫星通信网络与蜂窝网络标准及技术体系依然是彼此独立,需要通过专门的网关设备连接交互,其通信能力和效率很难满足十年后的“泛在连接”需求。为满足未来“泛在连接”需求,6G需要引入下文所述的空天地海一体化网络,该网络将是一个有机整体,也即需要统一的标准协议架构和技术体系,真正实现空天地海一体化的“泛在连接”。另外,5G海量连接特性(mMTC)强调连接数量,而不要求实时性;超可靠低时延特性(uRLLC)强调可靠性与实时性,但对连接数量和吞吐量没有需求,是以降低频谱效率和连接数量为代价实现的。而6G的“万物随心”愿景则同时需要海量连接、可靠性、实时性和吞吐量需求,这些对通信网络是全新的巨大挑战,其对应的典型场景为下文所述的无线触觉网络。因此,虽然6G愿景涵盖的基本概念中部分在5G已有涉及,但6G愿景提出了更高的目标,以满足未来全新的场景需求。
概括来说,6G总体愿景是基于5G愿景的进一步扩展:“一念天地”中的“一念”一词强调实时性,指无处不在的低时延、大带宽的连接,“念”还体现了思维与思维通信的“深度连接”,“天地”对应空天地海无处不在的“泛在连接”;“万物随心”所指的万物为智能对象,能够“随心”所想而智能响应,即“智慧连接”;呈现方式也将支持“随心”无处不在的沉浸式全息交互体验,即“全息连接”。
图1、6G愿景
·智慧连接(Intelligent connectivity)
人工智能(Artificial Intelligence,AI)是当前最热门的话题之一,几乎各个领域都在探索利用AI技术。无线移动通信网络与AI结合,让AI更好的赋能网络也成为必然趋势[14-30]。目前人们已经开始尝试在5G系统中使用AI技术[31-32],但当前5G与AI的结合只能算是利用AI对传统网络架构进行优化改造,而不是真正以AI为基础的全新智能通信网络系统。首先,AI技术应用于5G网络的时机相对较晚,最近几年才真正展开研究并尝试把AI技术应用在5G网络,而5G网络架构本身早已定型。尽管5G网络架构设计初期考虑了足够的灵活性(即所谓软件可定义),但毕竟没有考虑AI技术特点,依然算是传统的网络架构体系。其次,尽管AI技术发展很快,也已在一些领域展现了其强大的能力,但在更多领域依然处于探索阶段,AI与无线通信技术结合研究更是刚起步不久,距离真正技术成熟还需要一个较长期的研究过程。
不过AI发展的趋势让我们看到了未来十年其技术成熟的可能性。同时,考虑到未来6G网络结构将会越来越庞大异构,业务类型和应用场景也越来越繁杂多变,充分利用AI技术来解决这种复杂的需求几乎是必然的选择。预期未来6G将会突破传统移动通信系统的应用范畴, 演变成为支撑全社会、全领域/行业运行的基础性互联网络。若未来网络依然以现有统一的通信网络框架来支撑6G时代极度差异化的繁杂应用,将会面临着前所未有的挑战。AI技术的新一轮复兴及迅猛发展, 为应对上述挑战并超越传统移动通信设计理念与性能提供了潜在的可能性,并将充分赋能未来6G网络[21]。因此,我们认为基于AI技术构建6G网络将是必然的选择,“智慧”将是6G网络的内在特征,即所谓“智慧连接”。
“智慧连接”特征可以表现为通信系统内在的全智能化:网元与网络架构的智能化、连接对象的智能化(终端设备智能化)、承载的信息支撑智能化业务。未来6G网络将会面临诸多挑战:更复杂、更庞大的网络,更多类型的终端及网络设备,更加复杂多样的业务类型。“智慧连接”将同时满足两方面的需求:一方面,所有相关连接在网络的设备本身智能化,相关业务也已智能化;另一方面,复杂庞大的网络本身也需要智能化方式管理。“智慧连接”将是支撑6G网络其它三大特性“深度连接”、“全息连接”和“泛在连接”的基础特性。
· 深度连接(Deep connectivity)
传统蜂窝网络(也包括即将规模部署的5G网络)已有深度覆盖的概念,主要是优化室内接入需求的深度覆盖。为实现室内深度覆盖,工程中一般采用室外宏基站覆盖室内,或者室内部署无线节点。4G及之前几代的蜂窝网络系统是针对以人为中心的通信需求,深度覆盖针对人员活动的典型室内场景进行优化。经过多代无线通信系统的技术演进及工程经验积累,对人员活动场所的典型室内场景覆盖优化技术已经非常成熟。5G开始,通信对象从以人为中心的通信扩展为同时包括物联通信,即所谓万物互联。因此,5G及未来无线通信网络设计及其部署需要同时兼顾人和物的深度覆盖需求,尤其是物联场景的深度覆盖。
人类生产和生活空间不断扩大,信息交互需求的类型和场景越来越复杂。以5G为开端的万物互联将会促进物联网通信需求快速提升,并很可能在未来几年内爆发。相对人员的通信需求,物联网信息交互无论是空间范围还是信息交互类型,都将会极大的扩展。可以预期,未来物联需求将会从几方面快速发展:
(1)连接对象活动空间的深度扩展。
(2)更深入的感知交互。未来的通信设备及其连接对象将大部分智能化,从而需要更深度的感知、更实时的反馈与响应,如同延伸的人类躯干和四肢。
(3)物理网络世界的深度数据挖掘。AI深度学习将会对未来通信网络的数据深度挖掘与利用,同时还包括为支持深度学习而强化的大数据通信需求。
(4)深入神经的交互。人机接口(Brain Computer Interface,BCI)等技术的成熟,思维与思维的直接交互将成为可能,一定程度的“心灵感应”将可能变为现实[10][34]。
因此,我们预期十年后(2030年~)的6G系统,接入需求将从深度覆盖演变为“深度连接(Deep connectivity)”,其特征可以概括为如下几点:
○ 深度感知(Deep Sensing):触觉网络(Tactile Internet);
○ 深度学习(Deep Learning /AI):深度数据挖掘;
○ 深度思维(Deep Mind):心灵感应(Telepathy)、思维与思维的直接交互(Mind-to-Mind Communication)。
· 全息连接(Holographic connectivity)
AR/VR(Virtual and Augmented Reality)被认为是5G最重要的需求之一,尤其是对5G高吞吐量需求的典型应用之一,5G将能够支持把当前有线或固定无线接入的AR/VR变为更广泛场景的无线移动AR/VR。一旦AR/VR可以更简单方便且不受位置限制的移动使用,将会促进AR/VR业务快速发展,进而刺激AR/VR技术与设备本身的快速发展与成熟。可以预期,十年后(2030年~),媒体交互形式将可能以现在平面多媒体为主,发展为高保真AR/VR交互为主,甚至全息信息交互,进而无线全息通信将成为现实。高保真AR/VR将普遍存在,全息通信及显示也可随时随地的进行,从而人们可以在任何时间和地点享受完全沉浸式全息交互体验,即实现所谓“全息连接”的通信愿景。当然,若想基于无线通信网络实现全息通信、高保真AR/VR将会面临诸多挑战[35],一系列文献已经在研究采用AI技术来解决相关问题[36-38],即需要“智慧连接”的支撑。
“全息连接”特征可以概括为:全息通信、高保真AR/VR、随时随地无缝覆盖的AR/VR。
· 泛在连接(Ubiquitous connectivity)
传统蜂窝网络也有随时随地的无线接入需求。不过如前所述,5G系统开始,相对人员的通信需求,物联网信息交互无论是空间范围还是信息交互类型都将会极大的扩展。物联设备的活动范围将会极大扩展通信接入的地理空间,包括布置于深地、深海或深空的无人探测器,中高空有人/无人飞行器,深入恶劣环境的自主机器人、远程遥控的智能机器设备等。另外,随着宇航、深海探测等领域的科学技术快速发展,在一些极端自然环境下的生存能力提升,人类自身的活动空间也在快速扩展。例如,2030~2040年,也许会有更多人有机会进入外太空,则卫星与地面、卫星之间及与航天器之间的通信需求将会更普遍,而不是现在仅仅局限于少数专业的科学探索领域的特殊通信需求;人类在地面的活动踪迹也会更多的出现在极地、沙漠腹地等;远洋的活动、更多无人岛屿进驻人类。上述通信场景构成十年后(2030年~)更为广泛的“随时随地”连接需求,即实现真正的“泛在连接(Ubiquitous connectivity)”,“广阔”的世界也将变得越来越触手可及。
“泛在连接”特征可以概括为:全地形、全空间立体覆盖连接,即“空-天-地-海”随时随地的连接,或称为空天地海一体化通信。对比“深度连接”和“泛在连接”,前者侧重连接对象的深度,后者强调地理区域的广度。
总结上述四大未来6G愿景,“智慧连接”是未来6G网络的大脑和神经,“深度连接”、“全息连接”和“泛在连接”三者构成6G网络的躯干,从而这四个特性共同使得未来6G网络成为完整的拥有“灵魂”的有机整体。未来通信系统将会在现有5G的基础上进一步发展增强,真正实现信息突破时空限制、网络拉近万物距离,实现无缝融合的人与万物智慧互联,并最终达到“一念天地,万物随心”的6G总体愿景。
2.2 需求与挑战(Requirements and Challenges)
2.1节对未来6G网络做了畅想,其美好愿景让人无限期待。但若想实现这些美好的愿景,我们将不得不面临诸多技术需求与挑战。毫无疑问,5G已有的几项基本技术指标还会在现有需求的基础上进一步提升,包括更高的吞吐量、更低的时延、更高的可靠性和更海量的连接数等。不过本文将重点讨论几项6G特有的关键技术需求与挑战。本节将会首先罗列这几项6G关键的技术需求与挑战,然后再对它们进行详细讨论和分析。为实现6G网络的愿景,满足未来通信需求,如下几项关键技术需求与挑战需要被考虑。
图2、6G需求与挑战
· 峰值速率:太比特时代(Terabit Era, Tb/s)
提及无线移动通信系统,人们首先要考虑的需求指标是峰值速率,峰值速率是从第一代无线移动通信系统开始就一直追求的关键技术指标之一。毫无疑问,6G也必将进一步提升峰值速率。从无线通信系统发展规律和6G愿景两个角度分析可知,6G峰值速率可能进入太比特时代(Terabit Era,Tb/s)。
首先,我们基于1~5G移动通信系统峰值速率提升的统计规律定量预测十年后(2030年~)的峰值速率需求。基于文献[44]的分析可知,1~5G移动通信系统峰值速率的增长服从指数分布(按照各代系统标准化的时间点计算)。基于峰值速率对应文中表一第二列所示(1~5G移动通信系统的峰值速率)预测未来十年的发展趋势,可知2030年可能达到Tb/s峰值速率。其次,从6G愿景定性分析可知,至少有两方面的应用需要6G峰值速率大幅度提升:
(1)智能化(大数据)的普遍应用,需要海量的数据传输需求,基于大数据的智能化应用可能是触发下一代移动通信系统发展的重要驱动力之一;
(2)高保真的AR/VR和全息通信将成为6G必然支持的应用,其所需的数据速率将远超我们目前已知的其他无线应用。
进一步,为达到高保真沉浸式AR/VR,不仅需要Tb/s的峰值速率,还需要较低的交互时延,也即需要高吞吐率与低时延同时保证。另外,随时随地AR/VR意味着任何时间任何地点都希望可以满足高速率需求,也即不仅要求峰值速率,对网络平均速率和覆盖也有极高的要求。
总结上述分析可知,6G网络将需要高达Tb/s级别的峰值速率。另外,不同于以往仅要求局部覆盖区域(例如热点区域)的峰值速率需求,6G网络还将要求能够随时随地的享受高速率、低时延的连接需求,这些将是6G网络需要面对的巨大挑战。
· 更高能效(Higher Energy Efficiency)
超大规模的移动通信网络已成为世界能源消耗的不可忽视的一部分。它不仅产生巨大的碳排放,而且占据了相当一部分的运营成本。未来6G网络拥有超高吞吐量、超大带宽、超海量无处不在的无线节点,这些将对能耗带来前所未有的巨大挑战。频谱效率提升和频谱带宽增大,吞吐量可以有巨大的提升,但随之而来的能效问题将会更加严重,需要尽可能降低每比特的能量消耗(J/bit)。无所不在、密集充满人类生产生活空间的感知网络传感器,将带来两方面的能耗问题:首先,庞大的数量带来高昂的总能耗;其次,如何方便有效地对无处不在的部署进行供能也是挑战。另外,“智慧连接”中海量数据处理功耗、超大规模天线的处理功耗等场景,也是未来6G网络需要面临的功耗挑战。面对未来6G网络巨大的能源消费压力,绿色节能通信显得尤为重要和迫切[45]。
· 随时随地的连接(Connection Everywhere and Anytime)
随着科学技术的进步,人类活动空间将进一步扩大,活动区域更普遍的到达高空、外太空、远洋、深海;通信节点,尤其是物联节点相对人员将遍布更广阔的区域。通信网络已经和人类的社会活动密不可分,未来需要构建一张无所不在(覆盖空天地海)、无所不连(万物互联)、无所不知(借助各类传感器)、无所不用(基于大数据和深度学习)的网络,真正实现随时随地的连接及交互需求。未来通信网络的通信目标应为:任何人(Anyone)在任何时间(Anytime)任何地点(Anywhere)可与任何人(Anyone)进行任何业务(Anyservice)通信或与任何相关物体(Related Objects)进行相关信息(Related Information)交互[46]。
· 全新理论与技术(New Theories and Technologies)
为实现6G极具挑战性的愿景,需要新增更多可用频谱资源,同时也需要在一些基础性的理论与技术上有所突破。基于对6G愿景的需求分析,我们认为需要在几个关键方面取得突破,包括全新信号采样机制、全新信道编码与调制机制、太赫兹通信的理论与技术、AI与无线通信结合的技术等。
· 自聚合通信架构(Self-Aggregating Communications Fabric)
几乎每一代3GPP标准都号称可以融合多种技术标准,但最终结果依然还是一个自我封闭的标准系统。尽管3GPP标准希望包打天下,但在万物互联逐渐实现的过程中,我们将不得不面临与其它复杂多样的垂直行业标准和技术融合的问题。为更好支持万物互联及垂直行业应用,6G应该真正可以动态的融合多种技术体系,具备对不同类型网络(技术)智能动态地自聚合能力。虽然5G能够一定程度地适应不同类型的网络(技术),但还是只能静态或半静态组合方式。6G将需要实现以更加智能灵活的方式聚合不同类型的网络(技术),以动态自适应地满足复杂多样的场景及业务需求。
· 非技术性因素的挑战(Nontechnical Challenges)
未来6G若想顺利落地实现,不仅要面临上述技术性问题的挑战,也将不得不需要尽力克服诸多非技术因素的挑战,主要涉及行业壁垒、消费者习惯及政策法规问题等。
相对5G,6G将会更加全面地渗透到社会生产、生活的各个方面,与其它垂直行业领域的结合也将更加紧密。这意味着移动通信不再局限于自己的领域,需要和其它垂直行业/领域紧密配合。但是,一些传统行业固有的行为方式或利益关系将会对移动通信的进入直接或间接地设置行业壁垒。
频谱分配与使用规则是另一个非技术限制因素。例如6G太赫兹频段的使用,一方面需要全球不同国家和地区协调分配,尽可能分配统一的频段范围,同时还需要考虑与该频谱的其它领域使用者协调,例如气象雷达等。
卫星通信将面临更多的政策法规限制。首先,卫星通信所用的轨道资源、频谱资源等都需要各国协商解决。其次,相对传统地面通信,卫星通信在全球漫游切换方面上将面临更多挑战。目前,几个主要国家及一些商业实体都在积极进行卫星通信系统搭建,如何协调这些彼此独立部署的卫星通信系统关系,将是一个极其复杂的问题。
另外,移动通信进入众多完全不同特点的垂直行业后,不得不面对差异化极大的用户使用习惯。如何更快速地改造这些千差万别的垂直行业用户固有思维方式和习惯,尽快适应全新的行为方式与规则,将是一个极具挑战的问题。
6G网络最终将提供每秒太比特速率,支撑十年后(2030年~)平均每人1000+无线节点的连接,并提供随时随地的即时全息连接需求。未来将是一个完全的数据驱动的社会,人与万物被普遍地、近乎即时(毫秒级)地连接,构成一个不可思议的完全连接的乌托邦世界。
3、6G候选关键技术
无线接入技术发展推动主要来自两个方面:关键理论/技术突破推动技术发展,应用需求驱动技术发展。对于未来6G将会有哪些潜在的关键技术构成,不同的机构分别给出了不同的观点[6-10]。当前尚处于6G概念探讨的初期,各家给出的观点差异还比较大。但相信随着大家对6G概念探讨和技术研究的深入,认识将会逐渐清晰,研究方向也会不断收敛聚焦。本节将首先分类罗列6G潜在关键候选技术特性,然后对相关候选技术特性进行分析和解读。
为实现第2节所描绘的6G愿景及其挑战,同时考虑相关技术发展状况与趋势,我们认为6G潜在关键技术特性可以包括如下几方面。
图3、6G潜在关键技术特性
基础性技术是构成6G网络的基石,只有关键基础技术被突破,6G网络相应的技术需求才可能满足,进而相关愿景才可能实现。而专有技术特性则由多个关键的基础性技术点有机组成,用于满足未来6G典型场景的需求。从系统维度看,多个关键技术点组成专有技术特性,而多个专有技术特性组合构建有机的系统。当前,我们需要对6G候选关键技术进行基础性研究和突破,为未来6G网络的标准化及工程实现技术研究奠定基础。其中,AI与无线通信结合研究(“AI-based Wireless Communication”)近期非常火热,也是实现未来6G网络“智慧连接”的关键技术,但是否可以作为无线领域的基础性技术尚存在争议。
3.1 新频谱通信技术
频谱是移动通信的基础,也是稀缺资源,持续增长的业务量需求要求未来移动通信系统扩展可用的频谱资源。太赫兹(Terahertz)和可见光(Visible Light)将是极具吸引力的两类重要的候选频谱。太赫兹频谱在通信等领域的开发利用受到了来自欧、美、日等国家和区域的高度重视,也获得了国际电信联盟(ITU)的大力支持。可见光通信技术是随着照明光源支持高速开关而发展起来的一种新型通信方式,可以有效的缓解当前射频通信频带紧张的问题,为短距离无线通信提供了一种新的选择方式。
本部分将分析太赫兹和可见光两类重要的候选频谱特性,探讨两者主要的应用场景,并给出面临的技术挑战。
3.1.1 太赫兹通信(THz Communication)
太赫兹波是指频谱在0.1~10 THz之间的电磁波,波长为30至3000微米。频谱介于微波与远红外光之间,在其低波段与毫米波相邻,而在其高波段与红外光相邻,位于宏观电子学与微观光子学的过渡区域。太赫兹作为一个介于微波与光波之间的全新频段尚未被完全开发,太赫兹通信具有频谱资源丰富、传输速率高等优势,是未来移动通信中极具优势的宽带无线接入(Tb/s级通信)技术[47]。美国联邦通信委员会专员Jessica Rosenworcel在2018年9月召开的美国移动通信世界大会上表示,6G可以采用基于太赫兹(THz)频谱的网络和空间复用技术[9]。
太赫兹波以其独有的特性,使太赫兹通信比微波和无线光通信拥有许多优势,决定了太赫兹波在高速短距离宽带无线通信、宽带无线安全接入、空间通信等方面均有广阔的应用前景。
(1)太赫兹波在空中传播时极易被空气中的水分吸收,比较适合于高速短距离无线通信;
(2)波束更窄、方向性更好,具有更强的抗干扰能力,可实现2~5 km内的保密通信。
(3)太赫兹波的频率高、带宽宽,能够满足无线宽带传输时对频谱带宽的需求。太赫兹波频谱在108~1013 GHz之间,其中具有几十GHz的可用频谱带宽,可提供超过Tb/s的通信速率。
(4)空间通信。在外层空间,太赫兹波在350μm、450μm、620μm、735μm和870μm波长附近存在着相对透明的大气窗口,能够做到无损耗传输,极小的功率就可完成远距离通信。并且,相对无线光通信而言,波束更宽,接收端容易对准,量子噪声较低,天线终端可以小型化、平面化。因此,太赫兹波可广泛应用于空间通信中,特别适合用于卫星之间、星地之间的宽度通信。
(5)太赫兹频段波长短,也适合采用更多天线阵子的Massive MIMO(相对毫米波同样大小甚至更小的天线体积)。初步的研究表明,Massive MIMO提供的波束赋型及空间复用增益可以很好的克服太赫兹传播的雨衰和大气衰落,可以满足密集城区覆盖需求(例如,200m小区半径)。
(6)能量效率高。相对于无线光通信而言,太赫兹波的光子能量低,大约是10-3eV,只有可见光的1/40,用它作为信息载体可以获得极高的能量效率。
(7)穿透性强。太赫兹波能以较小的衰减穿透物质,适合一些特殊场景的通信需求。
太赫兹频段用于移动通信具有不可替代的优势,但同时面临着多方面的挑战:
(1)覆盖与定向通信。电磁波传播特性表明,自由空间衰落大小与频率的平方成正比,因此太赫兹相对低频段有较大的自由空间衰落。太赫兹传播特性及巨量天线阵子,意味着太赫兹通信是高度定向的波束信号传播。我们需要针对这种高度定向传播的信号特征,重新设计和优化相关机制。
(2)大尺度衰落特性。太赫兹信号对阴影非常敏感,对覆盖范围影响很大。例如,如砖的信号衰减高达40-80dB,人体可以带来20-35dB的信号衰减。不过湿度/降雨衰落对于太赫兹通信影响相对较小,因为湿度/降雨衰落在100GHz以下随着频率提升而快速增加,但在100GHz以上已经相对平坦。可以选择雨衰相对较小的几个太赫兹频段作为未来太赫兹通信的典型频段,例如140GHz、220GHz和340GHz等附近频段[47]。
(3)快速信道波动与间歇性连接。给定的移动速度,信道相干时间与载波频率为线性关系,也即意味着太赫兹频段的相干时间很小,多普勒扩展较大,相比当前蜂窝系统所采用的频段变化快很多。此外,较高的阴影衰落将导致太赫兹传播的路径衰落更剧烈地波动。同时,太赫兹系统主要构成是小范围覆盖的微小区,而且是高度空间定向的信号传输,这意味着路径衰落、服务波束和小区关联关系将会迅速改变。从系统角度,意味着太赫兹通信系统的连接将表现为高度间歇性,需要有快速迅速适应机制来克服这种快速变化的间歇性连接问题。
(4)处理功耗。利用超大规模天线的一个重大的挑战是宽带太赫兹系统模数(A/D)转换的功率消耗。功耗一般与采样率呈线性关系,而与每比特的采样数为指数关系。太赫兹频段大带宽和巨量天线需要高分辨率的量化,实现低功耗、低成本的设备将是巨大挑战。
为支持太赫兹通信,如下几方面需要进一步深入研究:
(1)半导体技术,包括RF、模拟基带和数字逻辑等;
(2)研究低复杂度、低功耗的高速基带信号处理技术和集成电路设计方法,研制太赫兹高速通信基带平台;
(3)调制解调,包括太赫兹直接调制、太赫兹混频调制和太赫兹光电调制等;
(4)波形、信道编码;
(5)同步机制,例如,高速高精度的捕获和跟踪机制、数百量级天线阵子的同步机制;
(6)太赫兹空间和地面通信的信道测量与建模。
上述几方面技术问题研究需要综合兼顾,以便在太赫兹通信的性能、复杂性和功耗之间取得平衡。
另外,在频谱监管方面,目前国际电联己决定将0.12THz和0.2THz划归无线通信使用,但0.3THz以上频谱的监管规则尚不明晰,全球范围内尚未统一。需要国际电联层面和WRC会议共同努力,积极推动以达成共识。
太赫兹通信技术的研究只有二十年时间,很多关键器件还没有研制成功,一些关键技术还不够成熟,还需进行大量的研究工作。但太赫兹通信是一个极具应用前景的技术,随着关键器件及关键技术的突破,太赫兹波通信技术必将给人类生产生活带来深远的影响。
3.1.2 可见光通信(Visible Light Communications)
一种对现有无线射频通信技术可能的补充技术是光无线通信(Optical Wireless Communications,OWC),频段包括红外、可见光和紫外,可以有效的缓解当前射频通信频带紧张的问题。其中,可见光频段是OWC最重要的频段,将在本节重点讨论。
可见光波段(390-700纳米)的OWC系统通常被称为可见光通信(Visible Light Communications,VLC),它充分利用可见光发光二极管(LED)的优势,实现照明和高速数据通信的双重目的。与无线电通信相比,VLC具有多方面极具吸引力的优势。首先,可见光通信技术可以提供大量潜在的可用频谱(THz级带宽),并且频谱使用不受限,不需频谱监管机构的授权。其次,可见光通信不产生电磁辐射,也不易受外部电磁干扰影响,所以可广泛应用于对电磁干扰敏感、甚至必须消除电磁干扰的特殊场合,如医院、航空器、加油站和化工厂等。再次,可见光通信技术所搭建的网络安全性更高。该技术使用的传输媒介是可见光,不能穿透墙壁等遮挡物,传输限制在用户的视距范围以内,这就意味着网络信息的传输被局限在一个建筑物内,有效地避免了传输信息被外部恶意截获,保证了信息的安全性。最后,可见光通信技术支持快速搭建无线网络,可以方便灵活的组建临时网络与通信链路,降低网络使用与维护成本。像地铁、隧道等射频信号覆盖盲区,如果使用射频通信,则需要高昂的成本建立基站,并支付昂贵的维护费用。而室内可见光通信技术可以利用其室内的照明光源作为基站,结合其它无线/有线通信技术,为用户提供便捷的室内无线通信服务。
OWC典型应用场景包括:光热点(特别是在室内场景)、短距离通信、星间链路激光通信和海底通信(克服衰减和电磁干扰)。这些典型应用场景的OWC技术值得深入研究,并针对性的优化解决。
|
|