通信人家园

 找回密码
 注册

只需一步,快速开始

短信验证,便捷登录

搜索

军衔等级:

  少将

注册:2015-1-2880
跳转到指定楼层
1#
发表于 2024-3-4 14:19:48 |只看该作者 |倒序浏览
谷歌DeepMind的研究人员推出了,首个无需数据标记、无监督训练的生成交互模型——Generative Interactive Environments,简称“Genie”。

Genie有110亿参数,可以根据图像、真实照片甚至草图,就能生成各种可控制动作的视频游戏。Genie之所以有如此神奇功能,主要使用了3万小时,6800万段的游戏视频进行了大规模训练。

并且在训练过程中没有使用任何真实动作标签或其他特定提示,但Genie可以基于帧级别的,使用户在生成的环境中进行各种动作控制非常强!

值得一提的是,Genie是一个通用基础模型,也就是说其学到的潜在动作关系、序列、空间可以应用在其他领域中。

论文地址:https://arxiv.org/abs/2402.15391

项目地址:https://sites.google.com/view/genie-2024/home

Genie的核心架构用了ST-Transformer(时空变换器)。这是一种结合了Transformer模型的自注意力机制与时空数据的特性,以有效处理视频、多传感器时间序列、交通流量等时空数据。

640.png

ST-Transformer主要通过捕捉数据在时间和空间上的复杂依赖关系,提高了对时空序列的理解和预测能力,主要有3大模块组成。
640 (1).png
图片将一张草图,直接生成可控的小游戏

640.gif
转化展示

视频分词器

这是一个基于VQ-VAE的模块,可将原始视频帧压缩成离散的记号表示,以降低维度并提高后续模块的视频生成质量。

640 (2).png

这个过程类似自然语言处理中的分词,将连续的视频帧序列分解为离散的视频片段。

视频分词器使用了ST-transformer来对视频进行编码,并生成对应的视频标记。这些标记将作为后续动力学模型的输入,用于预测下一帧视频。

潜在动作模型

这是一个无监督学习模块,可从原始视频中推断出观察到的状态变化对应的潜在动作。并根据这些潜在动作实现对每一帧的控制。潜在动作模型通过对视频标记序列进行建模,学习到了不同帧之间的动作关系。

640 (3).png

具体来说,潜在动作模型可以将一个视频标记序列作为输入,并生成对应的潜在动作序列。这些潜在动作序列可以用于控制生成环境中的每一帧,使用户能够在生成的交互环境中进行精确的操作。

动力学模型

主要基于潜在动作模型学习到的动作关系,根据潜在动作和过去的帧标记预测下一帧的视频。可以把该模块看作是一个预测模型,通过学习视频序列的动态变化模式,能够生成逼真的连续视频。

动力学模型的输入包括前一帧的图像表示和当前帧的动作表示。为了将图像表示和动作表示进行融合,Genie采用了一个基于Transformer架构的编码器来对它们进行编码。

640 (4).png

在编码器中,首先对前一帧的图像进行编码,并采用了一种视频标记器的方法,将图像分割成若干个离散的标记,每个标记代表图像中的一个局部区域。这种分割可以帮助模型捕捉到图像中的空间信息。

640 (5).png

当前帧的动作表示也通过编码器进行编码。动作表示可以是离散的动作类别或连续的动作向量,具体的形式取决于具体的应用场景。

编码器将动作表示转换为一个固定长度的向量,以便与图像表示进行融合。在获得图像表示和动作表示的编码后,它们被输入到动力学模型中进行预测。

举报本楼

本帖有 1 个回帖,您需要登录后才能浏览 登录 | 注册
您需要登录后才可以回帖 登录 | 注册 |

手机版|C114 ( 沪ICP备12002291号-1 )|联系我们 |网站地图  

GMT+8, 2024-11-5 16:23 , Processed in 0.146947 second(s), 19 queries , Gzip On.

Copyright © 1999-2023 C114 All Rights Reserved

Discuz Licensed

回顶部