生成式 AI 在提升生产力效率方面展现出巨大的潜力,这也使得企业生产力场景成为过去两年生成式 AI 落地速度最快的应用领域之一。然而,企业在初步体验了这一技术的「尝鲜」之后,如何确保员工在工作中持续使用生成式 AI,而不是将其搁置一旁,已成为所有竞争 AI 基础设施的云计算巨头们必须思考的重要问题。
这就需要回答一个核心问题:「今天企业在运用生成式 AI 时面临哪些挑战?」而在这一话题中,亚马逊云科技无疑是最有发言权的企业之一。
在正在进行的 re:Invent 大会上,亚马逊云科技推出了数十项生成式 AI 相关的新产品,涵盖了从最底层的 AI 算力芯片、模型训练和基础模型,到中间层的智能体开发,再到最上层的 AI 应用,技术栈涉及各个领域。
这些新产品和工具并不是技术团队随意定义的,而是源自过去一年中数万客户提出的各种需求。通过这些反馈,亚马逊云科技能够精准识别出客户面临的挑战,并据此推出符合需求的创新产品。今天企业引入生成式 AI 的主要挑战可以归纳为五点,按重要性排序如下:
<ol>
丰富的选择权
更低的部署成本
训练更敏捷、更专业的小模型
消除幻觉
解决更复杂的任务
</ol>
极客公园总结了为什么这五大需求成为今天企业引入生成式 AI 的关键挑战,并梳理了亚马逊云科技在本届大会上发布的生成式 AI 新产品和服务,是如何帮助企业应对这些关键问题。
01
选择权大于一切
在当地时间周二上午的 Keynote 环节中,无论是马特·加曼还是安迪·贾西,在谈及企业部署生成式 AI 时,都着重强调了「丰富的选择(Choice Matters)」对于客户的重要性。
这点在亚马逊云科技的大模型策略中表现得尤为突出。与微软云和谷歌云等厂商更倾向于依赖自家大模型或顶尖合作伙伴的策略不同,亚马逊云科技虽然自主研发了 Titan 和 Nova 系列大模型,并重金投资了 Anthropic 这样的顶尖大模型开发商,但其整体策略更注重为开发者提供一个多样化的大模型选择平台,用以构建 AI 应用。
而作为亚马逊云科技最重要的「客户」,亚马逊对此深有体会。过去在亚马逊内部构建项目中所使用模型的多样性令人惊讶。亚马逊给了开发人员自主选择的权利,原本以为大家都会选择 Claude 这样的顶尖模型——虽然确实内部也有很多开发人员选择了 Claude,但他们也会采用 Llama、Mistral,以及一些自己开发的模型。
一般情况下,这样的操作还算可控,但经营者可能不会只考察一个地点,也许是想对数百个潜在的开店地点进行分析,而且这些地点还分布在不同的地理区域。当这样做的时候,你会发现这些智能体可能并非独立工作,智能体 A 所掌握的信息或许对智能体 B 是有价值的,所以你其实希望它们能够相互交互、共享信息。可一旦涉及到数百个智能体都要进行交互、返回数据、共享信息、再返回操作时,整个管理系统的复杂程度就会急剧上升,变得完全难以掌控。
今年的 re:Invent 无疑是一场令人震撼的盛会。不少已连续参与多届的企业客户、技术人员和工程师都用「震撼」来形容。甚至连已经离开亚马逊云科技数年的传奇 CEO 安迪·贾西——曾带领亚马逊走出困境的关键人物,也时隔多年再次登上了 re:Invent 的舞台。
前三天的活动里,亚马逊云科技发布了数十个生成式 AI 领域和云基础设施相关的新产品和技术,这些新产品中,单独拿出一两项往往便足以成为一场云服务公司大型发布会的核心内容。亚马逊云科技之所以选择在一场发布会上集中推出如此多的新功能,主要有两方面原因:一是当前 AI 应用企业面临的问题异常复杂,需要多维度、多场景的解决方案来应对;二是亚马逊云科技长期以来秉承的「客户至尚」文化,驱动其以全面的创新满足客户需求。
而这种高密度的发布也从侧面展现了亚马逊云科技在生成式 AI 领域的巨大资源投入和坚定的战略意图,表明其在这个迅速发展的领域中占据领先地位的决心。
即将到来的 2025 年,无疑将成为生成式 AI 在企业级市场大规模部署的关键节点。从今年 re:Invent 发布的众多应用和新功能可以看出,经过几年的尝试与探索,生成式 AI 的发展已经迈出了从早期试验阶段向产业落地的转变。这一阶段不再仅仅关注技术的可行性,而是开始聚焦于如何解决企业具体的业务需求和实际问题。
这些问题正被快速解决,标志着生成式 AI 不仅作为生产力工具的潜力被验证,更逐渐具备作为核心生产力的能力。换句话说,生成式 AI 已经逼近了「真正可用」的临界点,即从概念验证走向大规模应用的边缘。