如果我研究像生物学这样的领域,我写了一篇文章叫做《充满爱意的机器(Machines of Loving Grace)》,在我看来,人类正在努力理解生物学的复杂性。如果你去斯坦福大学、哈佛大学或伯克利大学,你会发现整个系里的人都在研究免疫系统或代谢途径,而每个人只了解一小部分,只专注于其中的一部分。他们正在努力将自己的知识与其他人的知识结合起来。所以我有一种直觉,在顶端人工智能有很大的空间可以变得更聪明。
话虽如此,我们公司,我猜还有其他公司,正在研究如何合成数据,你可以使用模型生成更多已有类型的数据,甚至可以从头开始生成数据。你可以想想 DeepMind 的 AlphaGo Zero 是如何做到的,他们设法让一个机器人从完全不会下围棋到超越人类水平,仅仅通过与自己对弈。AlphaGo Zero 版本甚至不需要来自人类的示例数据。
我认为我们做得非常好。我们有 Haiku、Sonnet 和 Opus ,在命名方面处于有利地位。我们正在努力保持这种状态,但它并不完美,所以我们会尝试回归简单。但就这个领域的性质而言,我觉得没有人能找到完美命名方法。它在某种程度上是一种不同于普通软件的范式。没有哪家公司在这方面做得很完美。我们在这方面的挣扎程度令人惊讶,你知道,相对于训练模型的宏大科学来说,这是多么微不足道的事情。
并非所有属性都是能力。模型可以很有礼貌或粗鲁,也可能有热情或冷漠的个性。它们可能很无聊,也可能非常独特。我们有一整个团队专注于研究,我想我们称之为 Claude 角色,但这仍然是一门非常不精确的科学,我们经常发现模型具有我们不知道的属性。事实上,你可以和模型交谈 10,000 次,但有些行为你可能看不到,就像人类一样,对吧?比如说我认识某人已经几个月的时间了,但可能不知道他们有某种技能,也不知道他们有一方面的特质。
Dario Amodei:我不想遵循任何命名方案,如果我在这里说,“明年我们将推出 Claude 4”,然后我们又决定重新开始,因为出现了一种新模型...... 我不想承诺。在正常的业务过程中,我预计 Claude 4 会在 Claude 3.5 之后推出,但在这个古怪的领域,你永远不知道会发生什么。
事实证明,实际上不需要太多额外的训练,模型就可以很好地完成这项任务。这是泛化的一个很好的例子。人们有时会说,进入低地球轨道你就已经成功了一半,因为逃离重力需要付出很多努力。如果你有一个强大的预训练模型,我觉得你就已经成功了一半。所以实际上,让 Claude 做到这一点并不需要花费太多时间。
你可以将其设置为循环:给模型一个屏幕截图,告诉它单击什么,为它提供下一张屏幕截图,告诉它单击什么,这就成了一个近乎 3D 的模型视频交互,它能够完成所有这些任务。它可以填写电子表格,可以与网站交互,可以打开各种程序,打开不同的操作系统,Windows、Linux、Mac。所以我认为所有这些都非常令人兴奋。理论上只需为模型提供 API 来驱动计算机屏幕。这确实降低了门槛。有很多人要么无法与这些 API 交互,要么需要很长时间才能完成。屏幕只是一个通用界面,交互起来要容易得多。因此,我预计随着时间的推移,这将降低许多障碍。
现在,老实说,当前的模型还有很多不足之处,我们在博客中坦诚地谈到了这一点。它会犯错误,会误按。我们小心地警告人们,“嘿,你不能就这样让它在你的电脑上连续运行。你必须给这个东西设置界限和护栏。”我认为这就是我们首先以 API 形式发布它的原因之一,而不是直接交给消费者并让其控制他们的电脑。但我确实认为将这些功能公之于众很重要。
随着模型变得越来越强大,我们将不得不努力解决如何安全地使用这些功能的问题。我们如何防止它们被滥用?我认为在功能仍然有限的情况下发布模型对于实现这一点非常有帮助。自发布以来,许多客户(我认为 Replit 可能是最快的)已经以各种方式使用了它。人们在 Windows 桌面、Mac、Linux 机器上都演示过。所以是的,这非常令人兴奋。我认为和其他任何东西一样,它具有令人兴奋的新功能,凭借这些令人兴奋的新能力,我们必须考虑如何让模型安全、可靠,按照人类的意愿行事。所有事情都是一样,同样的事情,同样的紧张局势。
Lex Fridman:正如乔布斯所说,顶尖人才希望周围也都是顶尖人才。从某种意义上来说,这是同样的道理。我不知道这是不是人性的一部分,但看到那些不专注于共同目标的人会让人感到失望;而看到一群人全心投入时则极具激励作用。这很有趣。从你与这么多优秀人才共事的经历来看,成为一名出色的 AI 研究员或工程师需要具备什么素质呢?
Lex Fridman:我们来谈谈训练后的调优吧。现在的调优方案似乎有很多元素,包括监督微调、RLHF(强化学习人类反馈),然后还有大量合成数据,或者说在寻找高质量合成数据的方式。所以如果这是让 Anthropic Claude 变得如此强大的“秘方”,其中有多少“魔法”来自预训练,又有多少来自后训练?
我猜测,对于大多数程序员所从事的工作类型,如果我们把任务范围缩小到“仅仅编写代码”,AI 系统可能会胜任这一任务。尽管如此,我认为比较优势的作用依然显著。当 AI 能够完成程序员 80% 的工作,包括大部分根据给定规范编写代码的任务时,剩下的工作将更加适合由人类来完成。人类将更多地参与高层次的系统设计、应用架构的合理性、设计和用户体验等方面,最终 AI 也会逐步胜任这些工作。
这是我对强大 AI 系统的愿景。但我认为,在比我们预期更长的时间里,人类所从事的少量工作内容将会扩展并填满整个岗位,以提高整体生产力。我们曾见过类似的情况。过去写作和编辑信件十分困难,印刷工作也很麻烦。然而,当文字处理器和计算机普及后,内容生产和共享变得非常便捷,人们的关注点也转向了创意。这种比较优势的逻辑将小部分任务扩展为大部分任务,并通过创造新任务来提升生产力,我认为这种情况还会继续。
Lex Fridman:我很好奇 IDE 的未来会是什么样子。关于与 AI 系统交互的工具,也许特定领域,比如我们提到的生物学领域,可能也需要自己的工具来提高效率。同样,编程也需要专门的工具。Anthropic 会在这方面涉足工具的开发吗?
Dario Amodei:我坚信强大的 IDE 有很多唾手可得的成果,就像你跟模型对话,模型会回应你一样。但看, IDE 擅长进行大量静态分析,静态分析可以实现很多功能,比如你甚至无需编写代码就可以找到许多错误。此外,IDE 可以执行特定任务,组织代码、测量单元测试的覆盖率。传统 IDE 已经能实现很多功能。而现在再加上模型能够编写和运行代码,我坚信即使在未来一两年内模型质量不再提高,也有巨大的机会提升人们的生产力,比如抓取一堆错误,替人们做很多琐碎的工作,我们还远未挖掘出它的全部潜力。
至于 Anthropic 本身,未来的发展难以预测。目前我们并不打算自己开发这样的 IDE,而是为一些公司提供支持,比如 Cursor、Cognition 以及其他一些在安全领域的公司,另有一些基于我们的 API 开发类似产品的公司。我们的观点是“百花齐放”,我们内部没有资源去尝试所有不同的方向,不如让我们的客户去尝试,我们会看到哪些成功,或许不同客户会以不同方式取得成功。所以我认为这很有前景,但 Anthropic 目前并不急于,也可能永远不会在这一领域与我们的客户竞争。
Lex Fridman:是的,观察 Cursor 如何成功集成 Claude 的过程很有趣,这在许多方面确实能提升编程体验,不那么简单。
Dario Amodei:其实,我在一篇文章中谈到过这个问题(文章是“Machines of Loving Grace:How AI Could Transform the World for the Better”,https://darioamodei.com/machines-of-loving-grace)。本来这篇文章只打算写两三页,在员工大会上简单聊聊,后来我意识到这是一个重要但未充分探讨的主题,于是越写越多。最终,这篇文章膨胀到了四五十页。当我写到关于工作和意义的部分时,我想,哦,这样下去可能得写到一百页了,所以我只能另写一篇文章来深入探讨。