当然,这个资源库也该入选 AI 开发者应该关注的榜单,其中提供的相关路线图包括 AI 工程师路线图、AI 与数据科学家路线图、提示词工程路线图、MLOps 路线图等,当然还有更加基础一些的计算机科学路线图和 Python 路线图。
AI 工程师路线图:https://roadmap.sh/ai-engineer
AI 与数据科学家路线图:https://roadmap.sh/ai-data-scientist
提示词工程路线图:https://roadmap.sh/prompt-engineering
MLOps 路线图:https://roadmap.sh/mlops
数据分析师路线图:https://roadmap.sh/data-analyst
除此之外,社区也创建了一些与 AI 相关的路线图,包括 LLM 工程师路线图、生成式 AI(GenAI)路线图、商业智能(BI)路线图、机器学习路线图等。详见其官网。
社区创建的生成式 AI 路线图概览
这个资源库的建立者和维护者 Kamran Ahmed 是英国的一位开发者,他在 2017 年开始建立这个库,并表示这是「一个为开发者提供学习路径和其它视觉内容以帮助他们事业成长的平台。」2022 年,他开始全职运营这个资源库(所以其官网上也有一些付费资源)。除了这个资源库,他还开发了多个软件工具,包括一些插件和实用工具。
下面我们就以 AI 工程师路线图为例,简单展示一下其用法,其它路线图就留给用户自行探索了。
按图索骥成为 AI 工程师
首先可以看到,这个路线图非常长。这也说明了一点,要成为一位合格的 AI 工程师,决非朝夕之功。
一开始,你需要对前端、后端以及全栈开发的知识有所了解。
之后,你可以简单了解 AI 工程师的概念以及工作内容。同时层层递进学习各种基础概念的含义,比如 AI、AGI、LLM、推理、训练、嵌入、向量数据库、AI 智能体、RAG、提示词工程等等。用户可以在点击该路线图上相应的概念直达一些相应的资源,比如下图展示了 AI 智能体概念对应的资源。当然,用户也可以只使用该路线图,然后自行寻找相关资源。
接下来,该路线图进入了了解预训练模型的阶段。在这里,你能了解什么是预训练模型及其好处和劣势。同时,你也可以开始尝试使用 OpenAI、Anthropic 和谷歌等提供商提供的现成 AI 服务。
当然,相信我们的读者已经经历过了上面大部分阶段。
接下来就可以开始尝试更高阶一点的 AI 应用了,包括通过 API 使用 LLM 以及从 Hugging Face 等模型托管网站下载模型自己部署。在这个过程中,你会接触到 AI 服务提供商的 token 计数和定价策略、提示词工程基础以及模型微调等概念。
同时,你也可以开始了解 AI 安全和道德伦理方面的议题,包括 AI 模型越狱攻击、提示词注入攻击、偏见与公平性等等。更进一步,你还可以学习最佳的安全实践,包括 OpenAI Moderation API、对抗测试、限制输入和输出的方法等。
当然,要成为专业的 AI 工程师,可不能止步于使用模型的程度。现在,你已经做好准备开始学习真正的技术了。
从了解嵌入开始,你将学习语义搜索、数据分类、推荐系统等嵌入用例,还将了解开放的 AI 嵌入 API 以及开源的嵌入工具。