通信人家园
标题: LTE物理层是如何工作的 [查看完整版帖子] [打印本页]
时间: 2015-4-15 15:32
作者: zhuoafa
标题: LTE物理层是如何工作的
一、LTE开机及工作过程
如下图所示:
二、小区搜索及同步过程
整个小区搜索及同步过程的示意图及流程图如下:
1)UE开机,在可能存在LTE小区的几个中心频点上接收信号(PSS),以接收信号强度来判断这个频点周围是否可能存在小区,如果UE保存了上次关机时的频点和运营商信息,则开机后会先在上次驻留的小区上尝试;如果没有,就要在划分给LTE系统的频带范围内做全频段扫描,发现信号较强的频点去尝试;
2)然后在这个中心频点周围收PSS(主同步信号),它占用了中心频带的6RB,因此可以兼容所有的系统带宽,信号以5ms为周期重复,在子帧#0发送,并且是ZC序列,具有很强的相关性,因此可以直接检测并接收到,据此可以得到小区组里小区ID,同时确定5ms的时隙边界,同时通过检查这个信号就可以知道循环前缀的长度以及采用的是FDD还是TDD(因为TDD的PSS是放在特殊子帧里面,位置有所不同,基于此来做判断)由于它是5ms重复,因为在这一步它还无法获得帧同步;
3)5ms时隙同步后,在PSS基础上向前搜索SSS,SSS由两个端随机序列组成,前后半帧的映射正好相反,因此只要接收到两个SSS就可以确定10ms的边界,达到了帧同步的目的。由于SSS信号携带了小区组ID,跟PSS结合就可以获得物理层ID(CELL ID),这样就可以进一步得到下行参考信号的结构信息。
4)在获得帧同步以后就可以读取PBCH了,通过上面两步获得了下行参考信号结构,通过解调参考信号可以进一步的精确时隙与频率同步,同时可以为解调PBCH做信道估计了。PBCH在子帧#0的slot #1上发送,就是紧靠PSS,通过解调PBCH,可以得到系统帧号和带宽信息,以及PHICH的配置以及天线配置。系统帧号以及天线数设计相对比较巧妙: SFN(系统帧数)位长为10bit,也就是取值从0-1023循环。在PBCH的MIB(master information block)广播中只广播前8位,剩下的两位根据该帧在PBCH 40ms周期窗口的位置确定,第一个10ms帧为00,第二帧为01,第三帧为10,第四帧为11。PBCH的40ms窗口手机可以通过盲检确定。而天线数隐含在PBCH的CRC里面,在计算好PBCH的CRC后跟天线数对应的MASK进行异或。
5)至此,UE实现了和ENB的定时同步;
要完成小区搜索,仅仅接收PBCH是不够的,因为PBCH只是携带了非常有限的系统信息,更多更详细的系统信息是由SIB携带的,因此此后还需要接收SIB(系统信息模块),即UE接收承载在PDSCH上的BCCH信息。为此必须进行如下操作:
(a)接收PCFICH,此时该信道的时频资源可以根据物理小区ID推算出来,通过接收解码得到PDCCH的symbol数目;
(b)在PDCCH信道域的公共搜索空间里查找发送到SI-RNTI(无线网络标识符)的候选PDCCH,如果找到一个并通过了相关的CRC校验,那就意味着有相应的SIB消息,于是接收PDSCH,译码后将SIB上报给高层协议栈;
不断接收SIB,上层(RRC)会判断接收的系统消息是否足够,如果足够则停止接收SIB至此,小区搜索过程才差不多结束。
三、随机接入过程
在同步和小区搜索过程结束之后,紧接着就是随机接入过程,整个随机过程的示意图如下:
1. UE sends preamble sequence to ENB on PRACH
Physical non-synchronization random access procedure
Physical channel: PRACH
Message: preamble sequence
2. ENB给UE回复响应消息
Address to RA-RNTI on PDCCH
Random access response grant
Physical channel: PDSCH
ENB向UE传输的信息至少包括以下内容:RA-preamble identifier, Timing Alignment information, initial UL-grant and assignment of Temporary C-RNTI 。
注:
RA-preamble identifier指UE 发送的preamble的标志符,和index有关。
Timing Alignment information是时间提前量信息,因为空间的无线传输存在延迟,ENB计算出这个延迟量并告诉UE,以确定下一次发送数据的实际时间。
UL-grant: 授权UE在上行链路上传输信息,有这个信息UE才能进行下一步的RRC连接请求。其中会给出UL-SCH可以传输的transport block的大小,最小为80bits.
3. RRC connection request(UE—> ENB)
在进行RRC连接请求以前先完成一些基本的配置:
> apply the default physical channel configuration
> apply the default semi-persistent scheduling configuration
> apply the default MAC main configuration
> apply the CCCH configuration
> apply the time Alignment Timer Common included in System
Information Block Type2;
> Start timer T300;
> initiate transmission of the RRC Connection Request message in accordance with
RRC layer产生RRC connection request并通过CCCH传输:CCCH -> UL-SCH -> PDSCH
获取UE-identity,要么由上层提供(S-TMSI), 要么是random value。如果UE向当前小区的TA(跟踪区)注册过了,上层就可以提供S-TMSI,并把establishment clause设置的与上层一致
4. RRC connection setup(ENB—>UE)
UE接收ENB发送的radio Resource Configuration等信息,建立相关的连接,进入RRC connection状态。
Action about physical layer:
Addressed to the Temporary C-RNTI on PDCCH
如果UE检测到RA success,但是还没有C-RNTI,就把temporary C-RNTI升为C-RNTI,否则丢弃。如果UE检测到RA success,而且已经有C-RNTI,继续使用原来的C-RNTI。
5. RRC connection setup complete(UE—> ENB)
RRC连接建立完成,UE向ENB表示接收到了连接的应答信息,应该是为了保证连接的可靠性的。
如果UE未成功接收到RRC connection setup消息,ENB应该会重发。不然RRC connection setup complete就没有存在必要。
在完成以上过程后,便可以进入正常的数据传输过程了。
四、数据传输过程
数据传输过程包括两方面过程:上行调度过程和下行调度过程。
■上行调度过程
1. UE向ENB请求上行资源
Physical channel: PUCCH
Message: SR (schedule request)
SR发送的周期以及在子帧中的位置由上层的配置决定。
UE需要告诉ENB自己要传输的数据量,同时SR中UE必须告诉ENB自己的identity (C-RNTI)。
注:
根据上层的配置UE按照一定的周期在PUCCH的固定位置传输SR,而ENB对SR的发送者的识别是通过UE和ENB事先约定好的伪随机序列来实现的。当UE有发送数据的需求是,就把相应得SR置1,没有资源请求时SR为空。SR只负责告诉ENB是否有资源需求,而具体需要多少资源则由上层的信令交互告诉ENB。
在TS36.213中指定:Scheduling request (SR) using PUCCH format 1,不需要进行编码调制,用presence/absence携带信息。
2. 上行信道质量测量
Physical signal: sounding reference signal
Physical channel: PUCCH(这里貌似不对,SRS是参考信号,不需物理信道承载)
ENB给UE分配上行资源之前首先必须要知道上行信道的质量,如果UE的上行信道质量较好且有传输数据的需求,ENB才会给UE分配资源。
Sounding reference signal应该对UE和ENB都是已知的,ENB根据从UE接收到的sounding reference signal 和自己已知的信号的对比就可以知道当前上行信道的质量了。当然,如果信道质量的变换很快,再加上空间信号传输的延迟估计的误差,由sounding reference signal测量出的信道质量可能会变得不准确。所以UE需要每过一段时间就发送sounding reference signal给ENB,以尽可能准确地得到当前信道的质量。
3. ENB分配资源并通知UE
Physical channel: PDCCH
分配完资源后ENB还必须把分配的结果告诉UE,即UE可以在哪个时间哪个载波上传输数据,以及采用的调制编码方案。
E-UTRAN在每个TTI动态地给UE分配资源(PRBs & MCS),并在PDCCH上传输相应的C-RNTI。
4. UE接收资源分配结果的通知并传输数据
Physical channel: PUSCH
UE首先接收ENB下发的资源分配通知,监视PDCCH以查找可能的上行传输资源分配,从common search space中获取公共信息,从UE specific search space中搜索关于自己的调度信息。根据搜索到的结果后就可以在PUSCH对应的PRB上传输数据信息。
注:
在上行链路中没有盲解码,当UE没有足够的数据填充分配的资源时,补0。
5. ENB指示是否需要重传
Physical channel: PHICH
6. UE重传数据/发送新数据
同4。
■下行调度过程
1.下行信道质量测量
ENB发送cell specific reference signal 给UE,UE估计CQI并上报给ENB。
CQI不仅告诉ENB信道的质量,还包含推荐的编码调制方式。
Periodic CQI reporting channel: PUCCH
Aperiodic CQI reporting channel: PUSCH
接收到的DCI format 0的CQI request设置为1时,UE非周期上报CQI、PMI和RI,上层可以半静态地配置UE周期性地上报不同的CQI、PMI和RI。
2. ENB分配下行资源
ENB根据下行信道的质量好坏自适应地分配下行资源(针对 UE选择不同的载波和slot)。
下行链路中,E-UTRAN在每个TTI动态地给UE分配资源(PRBs & MCS)。
3. ENB在下行信道传输数据
Physical channel: PDSCH
根据资源分配的结果在PDSCH上填充数据, 并在PDCCH上传输相应的C-RNTI。
4. UE接收数据并判断是否需要发送请求重传指示
Physical channel: PUCCH
Physical channel: PDSCH
UE根据检测PDCCH信道,解码对应的PDSCH信息。UE根据PDCCH告知的DCI format在common search spaces中接收PDSCH 广播控制信息。此外,UE通过PDCCH UE specific search spaces接收PDSCH数据传输。
5. ENB重传数据/发送新数据。
时间: 2015-4-15 15:34
作者: faker
mark,通俗易懂,赞一个,收藏了。
时间: 2015-4-16 09:38
作者: 雨中行走
ok
时间: 2015-4-16 12:27
作者: aibin396
感谢楼主的分享,希望能有其他的资料发布
时间: 2015-4-17 22:54
作者: 北回归线以北
比较通俗易懂,作为外行的我也看看
时间: 2015-4-20 18:32
作者: 非常90后
谢谢楼主,很有用:)
时间: 2015-4-24 17:56
作者: hansonli
说的好~
谢谢LZ
时间: 2015-4-25 11:46
作者: 河畔放牛
顶一发
时间: 2015-4-27 11:48
作者: lu394517074
nice
时间: 2015-5-7 10:34
作者: 311412
很清楚的介紹BS與UE的連結過程,感謝分享。
时间: 2015-5-7 13:27
作者: wenshuo_2000
没看懂啊,不过楼主的帖子很棒
时间: 2015-5-7 15:10
作者: 平凡中落魄
mark,基本是基于UE来介绍的,要是加入EPC就好了,希望能有后续介绍。
时间: 2015-7-15 10:23
作者: yjcdoc
MARK,通俗易懂
时间: 2015-7-15 14:39
作者: supermanguan
谢谢楼主
时间: 2015-12-21 15:24
作者: baibaige
就需要这个过程,一直搞不懂这些术语到底用在哪里,多谢楼主
通信人家园 (https://www.txrjy.com/) |
Powered by C114 |