通信人家园

标题: Large MIMO system 2014年的新书  [查看完整版帖子] [打印本页]

时间:  2014-7-13 10:31
作者: didibird     标题: Large MIMO system 2014年的新书

2014年初版的关于MIMO的新书《Large MIMO Systems》

Introduction 1
1.1 Multiantenna wireless channels 2
1.2 MIMO system model 4
1.3 MIMO communication with CSIR-only 5
1.3.1 Slow fading channels 5
1.3.2 Fast fading channels 6
1.4 MIMO communication with CSIT and CSIR 7
1.5 Increasing spectral efficiency: quadrature amplitude modulation
(QAM) vs MIMO 9
1.6 Multiuser MIMO communication 11
1.7 Organization of the book 12
References 14
2 Large MIMO systems 16
2.1 Opportunities in large MIMO systems 16
2.2 Channel hardening in large dimensions 17
2.3 Technological challenges and solution approaches 19
2.3.1 Availability of independent spatial dimensions 20
2.3.2 Placement of a large number of antennas and RF chains 20
2.3.3 Low complexity large MIMO signal processing 21
2.3.4 Multicell operation 23
References 24
3 MIMO encoding 25
3.1 Spatial multiplexing 25
3.2 Space-time coding 27
3.2.1 Space-time block codes 28
3.2.2 High-rate NO-STBCs 29
3.2.3 NO-STBCs from CDAs 30

3.3 Spatial modulation (SM) 31
3.3.1 SM 31
3.3.2 SSK 32
3.3.3 GSM 33
References 38
4 MIMO detection 40
4.1 System model 43
4.2 Optimum detection 44
4.3 Linear detection 45
4.4 Interference cancelation 47
4.5 LR-aided linear detection 48
4.5.1 LR-aided detection 49
4.5.2 SA 51
4.6 Sphere decoding 54
References 59
5 Detection based on local search 62
5.1 LAS 65
5.1.1 System model 65
5.1.2 Multistage LAS algorithm 66
5.1.3 Complexity 71
5.1.4 Generation of soft outputs 71
5.1.5 Near-optimal performance in large dimensions 73
5.1.6 Decoding of large NO-STBCs using LAS 76
5.2 Randomized search (RS) 81
5.2.1 RS algorithm 81
5.2.2 Performance and complexity 83
5.3 Reactive tabu search (RTS) 85
5.3.1 RTS algorithm 87
5.3.2 RTS algorithm versus LAS algorithm 91
5.3.3 Performance and complexity of RTS 92
5.3.4 LTS 96
5.3.5 R3TS 100
5.3.6 Lower bounds on ML performance using RTS 103
References 107
6 Detection based on probabilistic data association (PDA) 110
6.1 PDA in communication problems 111
6.2 PDA based MIMO detection 112
6.2.1 Real-valued bit-wise system model 112
6.2.2 Iterative procedure 113
6.2.3 Complexity reduction 115
6.3 Performance results 116

6.3.1 Performance in large V-BLAST MIMO 117
6.3.2 PDA versus LAS performance in NO-STBC MIMO 118
References 120
7 Detection/decoding based on message passing on graphical models 123
7.1 Graphical models 123
7.1.1 Bayesian belief networks 123
7.1.2 Markov random fields 124
7.1.3 Factor graphs 125
7.2 BP 127
7.2.1 BP in communication problems 128
7.2.2 BP algorithm on factor graphs 129
7.2.3 BP algorithm on pair-wise MRFs 129
7.2.4 Loopy BP 130
7.2.5 Damped BP 130
7.3 Application of BP in MIMO – an example 131
7.3.1 MIMO-ISI system model 131
7.3.2 Detection using BP 131
7.3.3 Performance and complexity 135
7.4 Large MIMO detection using MRF 138
7.4.1 MRF BP based detection algorithm 138
7.4.2 MRF potentials 139
7.4.3 Message passing 140
7.4.4 Performance 141
7.4.5 Complexity 143
7.5 Large MIMO detection using a factor graph 143
7.5.1 Computation complexity 146
7.5.2 Performance 146
7.5.3 Vector GA (VGA) in PDA versus SGA in FG BP 146
7.6 BP with the Gaussian tree approximation (GTA) 148
7.7 BP based joint detection and LDPC decoding 151
7.7.1 System model 152
7.7.2 Individual detection and decoding 152
7.7.3 Joint detection and decoding 153
7.7.4 Performance and complexity 155
7.8 Irregular LDPC codes design for large MIMO 156
7.8.1 EXIT chart analysis 157
7.8.2 LDPC code design 160
7.8.3 Coded BER performance 163
References 165

Detection based on MCMC techniques 169
8.1 Monte Carlo integration 169
8.2 Markov chains 171

8.3 MCMC techniques 173
8.3.1 Metropolis–Hastings algorithm 173
8.3.2 Simulated annealing 175
8.3.3 Gibbs sampling 176
8.4 MCMC based large MIMO detection 177
8.4.1 System model 178
8.4.2 Conventional Gibbs sampling for detection 179
8.4.3 Motivation for mixed-Gibbs sampling (MGS) 180
8.4.4 MGS 182
8.4.5 Effect of mixing ratio q 183
8.4.6 Stopping criterion 184
8.4.7 Performance and complexity of the MGS algorithm 186
8.4.8 Multirestart MGS algorithm for higher-order QAM 188
8.4.9 Effect of multiple restarts 188
8.4.10 MGS with multiple restarts 190
8.4.11 Restart criterion 191
8.4.12 Performance and complexity of the MGS-MR algorithm 191
8.4.13 Performance of the MGS-MR as a function of loading
factor 193
References 195
9 Channel estimation in large MIMO systems 197
9.1 MIMO capacity with imperfect CSI 197
9.2 How much training is required? 198
9.2.1 Point-to-point MIMO training 199
9.2.2 Multiuser MIMO training 201
9.3 Large multiuser MIMO systems 202
9.3.1 System model 202
9.3.2 Iterative channel estimation/detection in frequency-flat
fading 202
9.3.3 Iterative channel estimation/equalization in ISI channels 208
9.3.4 Equalization using initial channel estimates 213
9.3.5 Equalization using the MGS-MR algorithm 214
References 216
10 Precoding in large MIMO systems 219
10.1 Precoding in point-to-point MIMO 219
10.1.1 SVD precoding 220
10.1.2 Pairing of good and bad subchannels 221
10.1.3 Performance of X-codes and Y-codes 226
10.2 Precoding in a multiuser MIMO downlink 227
10.2.1 Linear precoding 227
10.2.2 Non-linear precoding 229
10.2.3 Precoding in large multiuser MISO systems 230

10.2.4 Precoder based on norm descent search (NDS) 233
10.2.5 Complexity and performance 236
10.2.6 Closeness to sum capacity 237
10.3 Multicell precoding 239
10.3.1 System model 241
10.3.2 Precoding without BS cooperation 244
10.3.3 Precoding with BS cooperation 245
10.3.4 Performance 246
References 248
11 MIMO channel models 251
11.1 Analytical channel models 252
11.1.1 Spatial correlation based models 252
11.1.2 Propagation based models 256
11.2 Effect of spatial correlation on large MIMO performance: an
illustration 260
11.2.1 Pinhole effect 261
11.2.2 Effect of spatial correlation on LAS detector performance 262
11.3 Standardized channel models 264
11.3.1 Models in IEEE 802.11 WiFi 265
11.3.2 Models in 3GPP/LTE 267
11.4 Large MIMO channel measurement campaigns 268
11.5 Compact antenna arrays 275
11.5.1 PIFA 276
11.5.2 PIFAs as elements in compact arrays 277
11.5.3 MIMO cubes 278
References 279
12 Large MIMO testbeds 285
12.1 12×12 point-to-point MIMO system 286
12.2 8×16 point-to-point MIMO system at 10 Gbps rate 287
12.3 16×16 multiuser MIMO system 287
12.4 64×15 multiuser MIMO system (Argos) 288
12.5 32×14 multiuser MIMO system (Ngara) 290
12.6 Summary 293
References 293
Author index 297
Subject index 303


时间:  2014-7-13 10:33
作者: didibird

附件如下
时间:  2014-7-13 11:01
作者: ahczqmz

谢谢楼主
时间:  2014-7-14 14:45
作者: luyuan81

太谢谢楼主了,这么新的数都能弄到。
时间:  2014-7-23 18:13
作者: lruby

谢谢啊,斑竹
时间:  2014-7-23 21:23
作者: 赫赫我永远

非常感谢,真是很好啊
时间:  2014-7-31 23:31
作者: gahana

有兴趣看看
时间:  2014-8-27 10:56
作者: yezhli1990

好东西,学习一下
时间:  2014-9-14 16:30
作者: wendiliu

xb:):):)
时间:  2015-3-21 22:24
作者: kinglightlee

学习下~
时间:  2015-3-22 09:42
作者: pillar008

太谢谢楼主了,这么新的数都能弄到
时间:  2015-3-22 09:42
作者: pillar008

楼主太牛了。。。。
时间:  2015-4-2 21:11
作者: xjddjx

刚好在研究,感谢分享:)
时间:  2015-5-27 11:41
作者: sophiayyy

太感谢了,非常感谢
时间:  2016-1-7 11:10
作者: yzhoung

好书,下载看一下
时间:  2016-3-14 10:42
作者: li2000zi

谢谢楼主 威武!
时间:  2016-5-29 11:53
作者: iscrescent

感谢楼主无私分享
时间:  2016-6-30 14:48
作者: chmam

好东东,学习一下
时间:  2016-10-29 13:47
作者: liyudong_23

好书值得下载
时间:  2016-11-2 16:01
作者: didibird

顶一个!!!!!!!!
时间:  2016-11-3 06:38
作者: nightrain16

赞及时!
时间:  2016-12-20 00:23
作者: shaoxuanbo

谢谢😜
时间:  2017-5-8 17:15
作者: 曾凤娇

学习学习
时间:  2017-8-11 16:56
作者: cxx0813

感谢楼主分享
时间:  2017-10-11 11:12
作者: xyshui2015

书很好,很清晰,可以复制,赞楼主!
时间:  2018-9-17 17:07
作者: yekaicomcn

好东西,非常感谢
时间:  2018-12-12 11:08
作者: mmyforever

感谢感谢
时间:  2022-5-9 09:18
作者: VectorXie

感谢楼主!




通信人家园 (https://www.txrjy.com/) Powered by C114