Break tokens:为了帮助模型区分具有相同patch数量(相同区域)但纵横比不同的图像,需要在图像行之间加入[IMAGE BREAK],在图像序列的末尾加上[IMAGE END]。 FFN中的门控:在隐藏层中使用门控,而非注意力块中的标准前馈层。 序列打包:为了在单个批次中有效地处理图像,作者沿序列维度将图像展平并连接起来,并构建了一个块对角掩码,以确保来自不同图像的patch之间没有注意力泄漏。 RoPE-2D:在自注意层中用相对旋转位置编码代替传统的绝对位置嵌入。虽然必须对学习到的位置嵌入进行插值以处理新的图像大小(通常以牺牲性能为代价),但相对位置编码自然而然地适合可变的图像大小。
通信人家园 (https://www.txrjy.com/) | Powered by C114 |