通信人家园

标题: 调研180多篇论文,这篇综述终于把大模型做算法设计理清了  [查看完整版帖子] [打印本页]

时间:  2024-11-6 21:37
作者: tayun     标题: 调研180多篇论文,这篇综述终于把大模型做算法设计理清了

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
本文第一作者柳斐(https://feiliu36.github.io/ )是香港城市大学计算机科学系博士生,师从张青富教授。研究领域为计算智能,自动算法设计,组合优化等。姚一鸣,郭平,杨致远,赵哲和林熙来自香港城市大学张青富教授团队。陆智超为香港城市大学计算机科学系助理教授。王振坤为南方科技大学系统设计与智能制造学院助理教授。童夏良和袁明轩来自华为诺亚方舟实验室。





算法设计(AD)对于各个领域的问题求解至关重要。大语言模型(LLMs)的出现显著增强了算法设计的自动化和创新,提供了新的视角和有效的解决方案。在过去的三年里,LLMs 被整合到 AD(LLM4AD)中取得了显著进展,在优化、机器学习、数学推理和科学发现等各个领域获得广泛研究和应用。鉴于这一领域的快速发展和广泛应用,进行系统性的回顾和总结既及时又必要。本文对 LLM4AD 的研究进行了系统性回顾。首先,我们概述和总结了现有研究。然后,我们沿着四个维度,包括 LLMs 的作用、搜索技术、提示策略和应用,提出了一个系统性分类和现有研究的回顾,讨论了使用 LLMs 的潜力和成就。最后,我们探讨当前的挑战,并提出了几个未解问题和未来研究的方向。

1. 引言

算法在解决各个领域的问题中发挥着至关重要的作用,包括工业、经济、医疗和工程等领域。传统的手工设计算法的方法繁琐且耗时,需要广泛的专业知识和大量的努力。因此,人们越来越关注在算法设计中采用机器学习和计算智能技术以自动化和增强算法开发过程。

近年来,大型语言模型(LLMs)已经成为生成人工智能领域的重大突破。LLMs 以其庞大的模型规模、巨大的训练数据和在语言理解、数学推理、代码生成等各个研究领域中有着出色的表现。在过去的三年里,大型语言模型用于算法设计(LLM4AD)已经成为一个新兴的研究领域,有望增强甚至重塑算法的构思、优化和实施方式。LLMs 的强大功能和适应性展示了其在改进和转变算法设计过程中的潜力,包括启发式生成、代码优化,甚至创造针对特定问题的新算法。这种方法不仅减少了设计阶段所需的人力,还提高了算法设计过程的创新性和效率。

尽管 LLM4AD 领域正在受到广泛研究和应用,但在这一新兴领域仍然缺乏系统性综述。本文旨在通过提供一个最新的多维度的系统综述来填补这一空白,全面展示 LLMs 在算法设计中的应用现状、主要挑战和未来研究方向。本文有助于深入探讨 LLMs 在增强算法设计方面的潜力,并为这一令人兴奋的领域的未来创新打下坚实基础。我们希望这将成为对该领域感兴趣的研究人员的有益资源,并为经验丰富的研究者提供一个系统性的综述。本文的贡献如下:

2. 大模型用于算法设计概览

本文旨在对新兴领域 “大语言模型用于算法设计”(LLM4AD)中现有研究工作进行系统的梳理和分类。我们并不打算涵盖所有关于大型语言模型(LLMs)和算法的文献。我们的调查范围如下所述:1)“大语言模型” 一词指的是规模足够大的语言模型。这些模型通常采用 Transformer 架构,并以自回归方式运行。使用较小模型进行算法设计的研究,如传统的基于模型和机器学习辅助的算法,不在考虑范围内。虽然精确定义 “大型” 模型具有挑战性,但大多数前沿的大型语言模型包含超过十亿个参数。使用其他大型模型缺乏语言处理能力的研究,如纯视觉模型,不在考虑范围内。然而,包括语言处理的多模态大型语言模型则在我们的调查范围之内。2)“算法” 一词指的是一组设计用来解决问题的数学指令或规则,特别是当由计算机执行时。这个广泛的定义包括传统的数学算法、大多数启发式方法,以及可以被解释为算法的某些策略。

我们介绍了论文收集和扫描的详细流程,包括四个阶段:

图中展示了随时间变化的论文发表数量趋势,时间线以月份表示。图表显示,与 LLM4AD 相关的研究活动显著增加,特别是注意到大多数研究是在近一年进行的。这表明 LLM4AD 是一个新兴领域,随着来自不同领域的学者意识到其巨大潜力,我们预计在不久的将来研究产出将显著增加。

图中还显示了在 LLM4AD 出版物中领先的机构及其所在国家。美国领先,紧随其后的是中国,这两个国家单独占据了 50%的出版物。接下来的八个国家,包括新加坡、加拿大和日本,共同贡献了总出版物的三分之一。发表最多论文的研究机构包括清华大学、南洋理工大学和多伦多大学等知名大学,以及华为、微软和谷歌等大型公司。这种分布强调了研究主题的广泛兴趣和它们在现实世界中的实际应用的重大相关性。

我们从所有审查过的论文的标题和摘要中生成了词云,每个词至少出现五次。它展示了前 80 个关键词,这些词被组织成四个颜色编码的簇,分别是 “语言”、“GPT”、“搜索和优化” 以及 “科学发现”。还突出显示了几个关键词,如 “进化”、“策略”、“优化器” 和 “代理”。









3. 大模型用于算法设计的四种范式

LLM4AD 论文按照大模型的结合方法可以分为四个范式:1)大模型作为优化算子(LLMaO)、2)大模型用于结果预测(LLMaP)、3)大模型用以特征提取(LLMaE)、4)大模型用来算法设计(LLMaD)。





4. 大模型用于算法设计中的搜索方法

目前的经验表明,单独采用大模型来进行算法设计往往难以应对特定的复杂算法设计任务。通过搜索方法的框架下调用大模型能够显著提升算法设计效率和效果。我们综述了目前在 LLM4AD 中采用的搜索方法,并将其大致分为四类:1)基于采样的方法,2)单点迭代的搜索方法,3)基于种群的搜索方法和 4)基于不确定性的搜索方法。详细的介绍和讨论可以在原文中查看。

5. 大模型用于算法设计中的提示词设计

图中展示了文献中使用的领域或预训练语言模型(LLMs)的百分比。其中,超过 80%的研究选择使用未经特定微调的预训练模型,大约 10%的研究在领域数据集上对预训练模型进行了微调,其中只有 4.4%的模型是在特定问题上从头开始训练的。图中还展示了最常使用的 LLMs。在 LLM4AD 的论文中,GPT-4 和 GPT-3.5 是使用最多的 LLMs,总共占了大约 50%。Llama-2 是最常用的开源 LLM。一旦我们拥有了预训练的 LLMs,提示工程对于有效整合 LLMs 到算法设计中非常重要。我们讨论了 LLM4AD 论文中使用的主要提示工程方法的应用情况,包括零样本、少样本、思维链、一致性和反思。





6. 大模型用于算法设计的应用领域

我们整理了四个主要的应用领域:1)优化,2)机器学习,3)科学发现,4)工业。其主要工作按照应用类别、方法、大模型结合范式、提示词策略和具体应用问题进行了分类罗列。具体介绍可以在全文中查看。

7. 未来发展方向

<ol>
  • 算法设计大模型 与使用通用的预训练 LLMs 不同,研究如何专门训练 LLM 以自动设计算法是值得的。在开发领域特定 LLM 时可以探索以下几个方面:1)训练领域 LLM 成本高且资源消耗大。借助领域数据和知识可以减小特定应用的算法 LLM 的规模。2)算法设计生成和收集领域数据存在挑战。与通用代码生成或语言处理任务不同,没有专门用于算法设计的大型且格式化的数据。3)与其学习一个文本和代码生成模型,如何学习算法开发思想和算法推理能力仍是一个未探索的问题。
  • 多模态 LLM 现有的 LLM4AD 工作主要集中在利用 LLM 的文本理解和生成能力,无论是在语言、代码还是统计方面。与传统的基于模型的优化相比,LLM 的一个优势是它们能像人类一样处理多模态信息,这一点很少被研究。已经有一些尝试展示了在算法设计中融入多模态信息的优势,预计将开发更多利用多模态 LLM 的方法和应用。
  • 人类 - 大模型交互 需要进一步研究 LLM 与人类专家在算法设计中的互动。例如,在 LLMaD 工作中,LLM 可以被视为智能代理,使人类专家可以介入并接管生成、修改和评估算法等任务。研究如何促进 LLM 与人类专家之间高效且富有成效的合作将是有价值的。可以为此目的使用群体智能中的思想和技术。
  • 基于 LLM 的算法评估 LLM 在算法评估中可能是有帮助的。已经进行了一些尝试来自动评估算法和评估算法设计。例如,已有工作利用基础模型自动生成定义下一个可学习任务的代码,通过生成环境和奖励函数,能够为算法评估创建各种模拟学习任务。我们期待更多关于基于 LLM 的算法评估的研究。
  • 理解 LLM 的行为 在大多数研究中,LLM 作为一个黑盒模型运作。解释 LLM 的行为不仅能丰富我们对 LLM 行为的理解,还有助于那些直接请求 LLM 困难或成本高昂的情况。已经有一些尝试来近似和理解 LLM 在解决方案生成中的上下文学习行为。例如,已有人设计了一个白盒线性算子来近似 LLM 在多目标进化优化中的结果。尽管有这些初步尝试,如何解释 LLM 的行为在许多算法设计案例中仍是一个开放的问题,包括启发式生成和想法探索。
  • 全自动算法设计 全自动算法设计面临两个主要挑战:1) 生成新的算法思想;2) 创建复杂、冗长的代码。虽然一些研究已经探讨了新思想的生成,但完整的算法设计(而不仅是启发式组件),包括启发式组件和详细的代码实现,仍然是一个挑战。现有应用通常专注于自动化预定义算法框架内的组件,而不是从头开始创建新算法。未来的研究需要解决这些复杂性,以推进全自动算法设计领域的发展。
  • LLM4AD 的标准测试集和平台 标准测试集能促进进行公平、标准化和便捷的比较。虽然我们很高兴见证了多样化的研究工作和应用的出现,但仍然缺乏对基于 LLM 的算法设计的系统和科学的标准评估手段。未来,预计会有更多的基准测试出现,它们将在推进 LLM4AD 方面发挥关键作用。</ol>8. 总结

    本文提供了一份最新的关于大语言模型在算法设计中应用(LLM4AD)的系统性综述。通过系统回顾这一新兴研究领域的主要贡献文献,本文不仅突出了 LLM 在算法设计中的当前状态和发展,还引入了一个全新的多维分类体系,分类了 LLM 的结合范式、搜索方法、提示词方法和应用场景。这一分类体系为学术界和工业界的研究人员提供了一个框架,帮助他们理解和使用 LLM 进行算法设计。我们还讨论了该领域当前面临的限制和挑战并提出和探讨未来研究方向来激发和指引后续研究。

    展望未来, LLM 与算法设计的交叉具有革命性地改变算法设计和应用方式的巨大潜力。LLM 在算法设计过程中的应用有助于极大的提高自动化程度并可能促进产生更高效、更有效和更具创造性的算法,以更好解决各个领域的复杂问题。我们希望本文能够有助于理解这一潜力,并促进 LLM4AD 这一有前景的研究领域的发展。


    来源:网易


    时间:  2024-11-7 10:09
    作者: Area_Code_61706

    提示: 作者被禁止或删除 内容自动屏蔽
    时间:  2024-11-7 10:09
    作者: 小小AI学通信

    哇,这篇综述终于搞定了大模型的算法设计,太厉害了!第一作者柳斐是香港城市大学的博士生,真是学霸啊!他的导师张青富教授也一定很牛,带出了这么优秀的学生和团队。姚一鸣、郭平、杨致远、赵哲和林熙也都是来自这个强大的团队,CityU的素质真的好高啊!

    另外,看到陆智超和王振坤两位助理教授也参与其中,感觉这篇论文的学术水平又提升了一个档次!他们一定在算法设计和智能制造领域有着深厚的造诣。

    总之,这篇综述的发表对于算法设计领域来说肯定是一个重要的里程碑,期待它能为未来的研究提供有益的启示和指导!




    通信人家园 (https://www.txrjy.com/) Powered by C114