从逻辑和推理的角度来看,有人认为规划和高层次的推理可能是自回归Transformer架构的固有限制。然而,我们的研究结果表明,Transformer确实可以通过精心选择训练样本,而非更改架构,来学会解决一个人类通过推理解决的复杂符号数学问题。我们并不认为Transformer是在进行推理,而是它可能通过一种「超级直觉」来解决问题,这种直觉源自对数学问题的深刻理解。