通信人家园

标题: 对标Gen-2!Meta发布新模型,进军文生视频赛道  [查看完整版帖子] [打印本页]

时间:  2023-12-5 16:14
作者: gythy1978     标题: 对标Gen-2!Meta发布新模型,进军文生视频赛道

随着扩散模型的飞速发展,诞生了Midjourney、DALL·E 3、Stable Difusion等一大批出色的文生图模型。但在文生视频领域却进步缓慢,因为文生视频多数采用逐帧生成的方式,这类自回归方法运算效率低下、成本高。


即便使用先生成关键帧,再生成中间帧新方法。如何插值帧数,保证生成视频的连贯性也有很多技术难点。


科技、社交巨头Meta则提出了一种全新的文生视频模型Emu Video。该模型使用了分解式生成方法,先生成一张图像,再以该图像和文本作为条件生成视频,不仅生成的视频逼真符合文本描述,算力成本也非常低。
论文:https://emu-video.metademolab.com/assets/emu_video.pdf


在线demo:https://emu-video.metademolab.com/#/demo


Emu Video的核心技术创新在于,使用了分解式生成方法。之前,其他文生视频模型是直接从文本描述映射到高维视频空间。


但由于视频维度非常高,直接映射非常困难。Emu Video的策略是首先生成一张图像,然后以该图像和文本作为条件,生成随后的视频帧。



由于图像空间维度较低,生成第一帧更容易,然后生成后续帧只需要预测图像如何变化,这样整个任务难度很大程度降低。
3.png
技术流程方面, Emu Video利用先前训练好的文本到图像模型来固定空间参数,初始化视频模型。


然后仅需要训练时间参数来进行文本到视频任务。在训练时,模型以视频片段及相应文本描述作为样本进行学习。


文本到图像


Emu Video使用了一个训练好的文本到图像模型,可以生成很逼真的图片。为了让生成的图片更有创意,这个模型在海量的图像和文本描述进行预训练,学到了很多图像的风格,例如,朋克、素描、油画、彩绘等。
4.png
文本到图像模型采用了U-Net结构,包含编码器和解码器。编码器包含多层卷积块,并降采样获得较低分辨率的特征图。


解码器包含对称的上采样和卷积层,最终输出图像。两个文本编码器(T5和CLIP模型)被并行加入,分别对文本进行编码产生文本特征。


图像到视频
这个模块使用了跟文本到图像模块类似的结构,也是一个编码器-解码器结构。不同的是增加了处理时间信息的模块,也就是说可以学习如何把图片中的内容变化成一个视频。


在训练的过程中,研究人员输入一小段视频,随机抽取其中的一帧图片,让这个模块学习根据这张图片和对应的文本生成整段视频。



在实际使用时,先用第一个模块生成第一帧图片,然后输入这张图片和文本给第二个模块,让它生成整个视频。
5.png

这种分解的方法让第二个模块的任务变得比较简单,只需要预测图片会随着时间而怎么变化和运动,就可以生成流畅逼真的视频。


为了生成更高质量逼真的视频,研究人员进行了一些技术优化:


1)采用零终端信噪比的散度噪声计划,能够直接生成高清视频,无需级联多个模型。之前的计划在训练和测试阶段信噪比存在偏差,导致生成质量下降。


2)利用预训练文本到图像模型固定参数,保留图像质量和多样性,生成第一帧时不需额外训练数据和计算成本。


3)设计多阶段训练策略,先在低分辨率训练快速采样视频信息,再在高分辨率进行微调,避免全程高分辨率的计算量大。
6.png
在人类评估中显示,Emu Video生成的4秒长视频比其他方法更具质量和遵循文本的要求。语义一致性超过86%,质量一致性超过91%,明显优于Gen-2、Pika Labs、Make-A Video等知名商业模型。




附件: 3.png (2023-12-5 15:30, 245.3 KB) / 下载次数 0
https://www.txrjy.com/forum.php?mod=attachment&aid=NjA3MjUwfDFlMGNhNTYyfDE3MzIyMTI5Mjl8MHww

附件: 4.png (2023-12-5 15:33, 352 KB) / 下载次数 0
https://www.txrjy.com/forum.php?mod=attachment&aid=NjA3MjUxfDNhNzhmMGFjfDE3MzIyMTI5Mjl8MHww

附件: 6.png (2023-12-5 15:35, 51.39 KB) / 下载次数 0
https://www.txrjy.com/forum.php?mod=attachment&aid=NjA3MjUyfDVmMmQ3ODU4fDE3MzIyMTI5Mjl8MHww

附件: 5.png (2023-12-5 15:35, 325.82 KB) / 下载次数 0
https://www.txrjy.com/forum.php?mod=attachment&aid=NjA3MjUzfDA5NTk5MDdkfDE3MzIyMTI5Mjl8MHww




通信人家园 (https://www.txrjy.com/) Powered by C114